. I TERRITORI TALINA MANA TALIKA T

Seat No.

HA-003-1016002

B. Sc. (Sem. VI) (CBCS) Examination **April - 2023** Mathematics : Paper - M - 09 (A) (Mathematical Analysis - 2 & Abstract Algebra - 2)

Faculty Code: 003 Subject Code : 1016002

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Write answer of each question in your main answer sheet.

1 (a)	Answer the following questions briefly :		
	(1)	Define Open Cover.	
	(2)	Define: Countable set.	
	(3)	Determine whether the subset $\{1, 2, 3\}$ of metric space	
		R is compact or not.	
	(4)	Define Connected set.	
(b)	Attempt any one out of two :		
	(1)	Show that subset $R - \{1\}$ is not connected.	
	(2)	State and prove Heine-Borel theorem.	
(c)	Attempt any one out of two :		
	(1)	If A and B are compact subset of metric space X , then	
		show that $A \cup B$ is also compact.	
	(2)	If F is a closed subset of metric pace X and K is a	
		compact subset of X. Then prove that $F \cap K$ is also	
		compact.	
(d)	Atte	mpt any one out of two :	5
	(1)	Prove that continuous image of a connected set is	
		connected in metric space.	
	(2)	Prove that every open interval of metric space R is an	
		open set.	
HA-003-10	16002] 1 [C	o ntd

2 (a) Answer the following questions briefly :

- (1) Define Laplace Transform.
- (2) Find $L^{-1}\left(\frac{1}{s}\right)$.
- (3) Find $L(\sinh t)$.

(4) Show that
$$L\left(t^{-\frac{1}{2}}\right) = \sqrt{\frac{\pi}{s}}$$
, where $s > 0$.

- (b) Attempt any **one** out of two :
 - (1) Find $L^{-1}\left(\frac{2s+6}{s^2+4}\right)$.

(2) Find
$$L(e^{-2t} \cdot \sin 5t)$$
.

(c) Attempt any **one** out of two :

(1) Prove that
$$L^{-1}\left(\frac{s}{\left(s+a\right)^2}\right) = e^{-at}\left(1-at\right).$$

(2) If
$$L\left\{f(t)\right\} = \overline{f}(s)$$
 then prove that

$$L\left\{e^{at}f\left(bt\right)\right\}=\frac{1}{b}\overline{f}\left(\frac{s-a}{b}\right).$$

(d) Attempt any **one** out of two :
(1) If
$$f(t) = t, 0 < t < 4$$

 $= 5, t > 4$ then find $L\{f(t)\}$.

(2) Prove that
$$L^{-1}\left(\frac{1}{\left(s^2+a^2\right)^2}\right) = \frac{1}{2a^3}\left(\sin at - at\cos at\right).$$

- (1) Find $L(te^t)$.
- (2) Write convolution theorem.
- (3) Find $L(t\sin t)$.
- (4) Find $L\left(\frac{\sin t}{t}\right)$.

HA-003-1016002]

[Contd...

5

3

4

2

4

(b) Attempt any **one** out of two :

(1) If
$$L\{f(t)\} = \overline{f}(s)$$
 then prove $L\{\frac{f(t)}{t}\} = \int_{s}^{\infty} \overline{f}(s)$.

(2) Prove that
$$L\left\{te^{2t} \cdot \cos 2t\right\} = \frac{s^2 - 4s - 5}{\left(s^2 - 4s + 13\right)^2}$$
.

(c) Attempt any **one** out of two :

(1) Prove that
$$L\left\{\frac{e^{-at} - e^{-bt}}{t}\right\} = \log\left(\frac{s+a}{s+b}\right).$$

(2) Prove that
$$L^{-1}\left(\frac{1}{s(s-1)}\right) = e^t - 1$$
.

(d) Attempt any **one** out of two :

(1) Prove that
$$L^{-1}\left\{\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}\right\} = t\cos at$$
.

(2) Using convolution theorem, prove

$$L^{-1}\left\{\frac{1}{s(s^{2}+4)}\right\} = \frac{1}{4}(1-\cos 2t).$$

- (1) Define Homomorphism.
- (2) Define Commutative Ring.
- (3) Define Field.
- (4) Define Division Ring.

(1) Let $\phi: (G, *) \to (G', \Delta)$ is Homomorphism. If $H' \leq G'$ then prove $\phi^{-1}(H) \leq G$.

HA-003-1016002]

3

2

4

(c)		Attempt any one out of two :		
		(1) Let <i>I</i> be an Ideal of a ring <i>R</i> with unity then prove that $I = R$ if $1 \in I$.		
		(2) Prove that a field has no proper ideal.		
(d)	(d)	Attempt any one out of two :		
		(1) Prove that a commutative ring with unity is a field if it has no proper ideal.		
		(2) Show that $R = \{a + b\sqrt{2} / a, b \in Z\} \neq 0$ is a ring with		
		respect to usual addition and multiplication.		
5	(a)	Answer the following questions briefly :	4	
		(1) Define Monic Polynomial.		
		(2) If polynomial $f = (0, 2, 3, 5, 0, 0,)$ then find degree of <i>f</i> .		
		(3) Define Quadratic polynomial.		
		(4) Define Constant polynomial.		
	(b)	Attempt any one out of two :	2	
		(1) Find inverse of quaternion $1 + i + j + k$.		
		(2) Prove that the degree of a unit element in $D[X]$ is always zero.		
((c)	Attempt any one out of two :		
		(1) State and prove remainder theorem of polynomials.		
		(2) In $R[x], f(x) = 4x^4 - 3x^2 + 1$ is divided by		
		$g(x) = x^3 - 2x + 1$ then find quotient $q(x)$ and remainder $r(x)$.		
	(d)	Attempt any one out of two :	5	
		(1) State and prove division algorithm for polynomials.		
		(2) In usual notation, let $f, g \in D[x] - \{0\}$ then prove		
		that $[fg] = [f] + [g]$.		